Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 421
Filter
1.
Sci Transl Med ; 16(745): eadi8214, 2024 May.
Article in English | MEDLINE | ID: mdl-38691622

ABSTRACT

Mucopolysaccharidosis type I Hurler (MPSIH) is characterized by severe and progressive skeletal dysplasia that is not fully addressed by allogeneic hematopoietic stem cell transplantation (HSCT). Autologous hematopoietic stem progenitor cell-gene therapy (HSPC-GT) provides superior metabolic correction in patients with MPSIH compared with HSCT; however, its ability to affect skeletal manifestations is unknown. Eight patients with MPSIH (mean age at treatment: 1.9 years) received lentiviral-based HSPC-GT in a phase 1/2 clinical trial (NCT03488394). Clinical (growth, measures of kyphosis and genu velgum), functional (motor function, joint range of motion), and radiological [acetabular index (AI), migration percentage (MP) in hip x-rays and MRIs and spine MRI score] parameters of skeletal dysplasia were evaluated at baseline and multiple time points up to 4 years after treatment. Specific skeletal measures were retrospectively compared with an external cohort of HSCT-treated patients. At a median follow-up of 3.78 years after HSPC-GT, all patients treated with HSPC-GT exhibited longitudinal growth within WHO reference ranges and a median height gain greater than that observed in patients treated with HSCT after 3-year follow-up. Patients receiving HSPC-GT experienced complete and earlier normalization of joint mobility compared with patients treated with HSCT. Mean AI and MP showed progressive decreases after HSPC-GT, suggesting a reduction in acetabular dysplasia. Typical spine alterations measured through a spine MRI score stabilized after HSPC-GT. Clinical, functional, and radiological measures suggested an early beneficial effect of HSPC-GT on MPSIH-typical skeletal features. Longer follow-up is needed to draw definitive conclusions on HSPC-GT's impact on MPSIH skeletal dysplasia.


Subject(s)
Genetic Therapy , Hematopoietic Stem Cell Transplantation , Mucopolysaccharidosis I , Humans , Mucopolysaccharidosis I/therapy , Mucopolysaccharidosis I/pathology , Mucopolysaccharidosis I/genetics , Male , Female , Child, Preschool , Infant , Treatment Outcome , Hematopoietic Stem Cells/metabolism , Child , Bone and Bones/pathology , Magnetic Resonance Imaging
2.
JCI Insight ; 9(5)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456506

ABSTRACT

Dysostosis multiplex is a major cause of morbidity in Hurler syndrome (mucopolysaccharidosis type IH [MPS IH], OMIM #607014) because currently available therapies have limited success in its prevention and reversion. Unfortunately, the elucidation of skeletal pathogenesis in MPS IH is limited by difficulties in obtaining bone specimens from pediatric patients and poor reproducibility in animal models. Thus, the application of experimental systems that can be used to dissect cellular and molecular mechanisms underlying the skeletal phenotype of MPS IH patients and to identify effective therapies is highly needed. Here, we adopted in vitro/in vivo systems based on patient-derived bone marrow stromal cells to generate cartilaginous pellets and bone rudiments. Interestingly, we observed that heparan sulphate accumulation compromised the remodeling of MPS IH cartilage into other skeletal tissues and other critical aspects of the endochondral ossification process. We also noticed that MPS IH hypertrophic cartilage was characterized by dysregulation of signaling pathways controlling cartilage hypertrophy and fate, extracellular matrix organization, and glycosaminoglycan metabolism. Our study demonstrates that the cartilaginous pellet-based system is a valuable tool to study MPS IH dysostosis and to develop new therapeutic approaches for this hard-to-treat aspect of the disease. Finally, our approach may be applied for modeling other genetic skeletal disorders.


Subject(s)
Dysostoses , Mucopolysaccharidosis I , Animals , Humans , Child , Mucopolysaccharidosis I/genetics , Mucopolysaccharidosis I/pathology , Mucopolysaccharidosis I/therapy , Iduronidase/genetics , Iduronidase/metabolism , Bone Marrow/pathology , Reproducibility of Results
3.
J Proteome Res ; 23(2): 718-727, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38164767

ABSTRACT

Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disease caused by the deficiency of the enzyme α-l-iduronidase (IDUA), typically leading to devastating secondary pathophysiological cascades. Due to the irreversible nature of the disease's progression, early diagnosis and interventional treatment has become particularly crucial. Considering the fact that serum and urine are the most commonly used specimens in clinical practice for detection, we conducted an analysis to identify the differential protein profile in the serum and urine of MPS I patients using the tandem mass tag (TMT) technique. A total of 182 differentially expressed proteins (DEPs) were detected in serum, among which 9 showed significant differences as confirmed by parallel reaction monitoring (PRM) analysis. The proteins APOA1 and LGFBP3 were downregulated in serum, while the expression levels of ALDOB, CD163, CRTAC1, DPP4, LAMP2, SHBG, and SPP2 exhibited an increase. In further exploratory studies of urinary proteomics, 32 identified DEPs were consistent with the discovered findings in serum tests, specifically displaying a high diagnostic area under the curve (AUC) value. Thus, our study demonstrates the value of serum-urine integrated proteomic analysis in evaluating the clinical course of MPS I and other potential metabolic disorders, shedding light on the importance of early detection and intervention in these conditions.


Subject(s)
Mucopolysaccharidosis I , Humans , Mucopolysaccharidosis I/diagnosis , Mucopolysaccharidosis I/genetics , Proteomics , Proteins/metabolism , Calcium-Binding Proteins
4.
Chem Pharm Bull (Tokyo) ; 71(12): 859-878, 2023.
Article in English | MEDLINE | ID: mdl-38044139

ABSTRACT

Hurler syndrome, a type of Mucopolysaccharidosis type I, is an inherited disorder caused by the accumulation of glycosaminoglycans (GAG) due to a deficiency in lysosomal α-L-iduronidase (IDUA), resulting in multiorgan dysfunction. In many patients with Hurler syndrome, IDUA proteins are not produced due to nonsense mutations in their genes; therefore, readthrough-inducing compounds, such as gentamycin, are expected to restore IDUA proteins by skipping the premature termination codon. In the present study, we synthesized a series of chromenopyridine derivatives to identify novel readthrough-inducing compounds. The readthrough-inducing activities of synthesized compounds were examined by measuring cellular IDUA activities and GAG concentrations in Hurler syndrome patient-derived cells. Compounds with a difluorophenyl group at the 2-position of chromenopyridine, a cyclobutyl group at the 3-position, and a basic side chain or basic fused ring exhibited excellent readthrough-inducing activities. KY-640, a chromenopyridine derivative with a tetrahydroisoquinoline sub-structure, increased the cellular IDUA activities of patient-derived cells by 3.2-fold at 0.3 µM and significantly reduced GAG concentrations, and also significantly increased enzyme activity in mouse models, suggesting its therapeutic potential in patients with Hurler syndrome.


Subject(s)
Mucopolysaccharidosis I , Mice , Animals , Humans , Mucopolysaccharidosis I/drug therapy , Mucopolysaccharidosis I/genetics , Codon, Nonsense
5.
Chem Pharm Bull (Tokyo) ; 71(9): 701-716, 2023.
Article in English | MEDLINE | ID: mdl-37661376

ABSTRACT

The readthrough mechanism, which skips the premature termination codon and restores the biosynthesis of the defective enzyme, is an emerging therapeutic tactic for nonsense mutation-related diseases, such as Hurler syndrome, a type of mucopolysaccharidosis. In the present study, novel triaryl derivatives were synthesized and their readthrough-inducing activities were evaluated by a luciferase reporter assay with a partial α-L-iduronidase (IDUA) DNA sequence containing the Q70X nonsense mutation found in Hurler syndrome and by measuring the enzyme activity of IDUA knockout cells transfected with the mutant IDUA gene. KY-516, a representative compound in which the meta position carboxyl group of the left ring of the clinically used ataluren was converted to the para position sulfamoylamino group, the central ring to triazole, and the right ring to cyanobenzene, exhibited the most potent readthrough-inducing activity in the Q70X/luciferase reporter assay. In Q70X mutant IDUA transgenic cells, KY-516 significantly increased enzyme activity at 0.1 µM. After the oral administration of KY-516 (10 mg/kg), the highest plasma concentration of KY-516 was above 5 µM in rats. These results indicate that KY-516, a novel triaryl derivative, exhibits potent readthrough-inducing activity and has potential as a therapeutic agent for Hurler syndrome.


Subject(s)
Mucopolysaccharidosis I , Animals , Rats , Mucopolysaccharidosis I/drug therapy , Mucopolysaccharidosis I/genetics , Codon, Nonsense , Administration, Oral , Biological Assay , Triazoles
6.
Sci Rep ; 13(1): 12716, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37543633

ABSTRACT

Mucopolysaccharidosis type I (MPS I) is an inherited lysosomal disorder that causes syndromes characterized by physiological dysfunction in many organs and tissues. Despite the recognizable morphological and behavioral deficits associated with MPS I, neither the underlying alterations in functional neural connectivity nor its restoration following gene therapy have been shown. By employing high-resolution resting-state fMRI (rs-fMRI), we found significant reductions in functional neural connectivity in the limbic areas of the brain that play key roles in learning and memory in MPS I mice, and that adeno-associated virus (AAV)-mediated gene therapy can reestablish most brain connectivity. Using logistic regression in MPS I and treated animals, we identified functional networks with the most alterations. The rs-fMRI and statistical methods should be translatable into clinical evaluation of humans with neurological disorders.


Subject(s)
Mucopolysaccharidosis I , Humans , Animals , Mice , Mucopolysaccharidosis I/genetics , Mucopolysaccharidosis I/therapy , Brain/diagnostic imaging , Genetic Therapy/methods , Brain Mapping/methods , Magnetic Resonance Imaging
7.
J Pediatr ; 263: 113644, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37516270

ABSTRACT

OBJECTIVE: To report on the first 3 years of mucopolysaccharidosis type I (MPS I) newborn screening (NBS) in the large and diverse state of California. STUDY DESIGN: The California Genetic Disease Screening Program began universal NBS for MPS I on August 29, 2018. The screening uses a 2-tiered approach: an α-L-iduronidase (IDUA) enzyme activity assay followed by DNA sequencing for variants in the IDUA gene. RESULTS: As of August 29, 2021, 1 295 515 California newborns were screened for MPS I. In tier 1 of screening, 329 (0.025%) had an IDUA enzyme measurement below the cutoff and underwent tier-2 IDUA DNA sequencing. After tier 2, 146 (0.011%) newborns were screen positive, all of whom were referred to a metabolic Special Care Center for follow-up. After long-term follow-up, 7 cases were resolved as severe MPS I (Hurler syndrome) and 2 cases as attenuated MPS I for an MPS I birth prevalence of 1/143 946. DNA sequencing identified 107 unique IDUA variants among a total of 524 variants; 65% were known pseudodeficiency alleles, 25% were variants of uncertain significance, and 10% were pathogenic variants. CONCLUSIONS: As a result of a 2-tiered NBS approach, 7 newborns diagnosed with Hurler syndrome had received early treatment for MPS I. Continuation of California's long-term follow-up program will be crucial for further understanding the complex genotype-phenotype relationships of MPS I.


Subject(s)
Mucopolysaccharidosis I , Humans , Infant, Newborn , Mucopolysaccharidosis I/diagnosis , Mucopolysaccharidosis I/genetics , Neonatal Screening , Iduronidase/genetics , Genetic Testing , Alleles
8.
Ann N Y Acad Sci ; 1526(1): 114-125, 2023 08.
Article in English | MEDLINE | ID: mdl-37347427

ABSTRACT

Mucopolysaccharidoses (MPS) are a group of rare congenital metabolic disorders caused by the deficiency or low activity of enzymes required for glycosaminoglycans degradation. Mutations in the α-l-iduronidase gene (IDUA) are associated with mucopolysaccharidosis type I (MPS I). Our study here aims to identify an MPS-related gene mutation in a typical patient with MPS and to further explore the possible pathogenic mechanism. We identified a homozygous c. 2T>C (p.M1T) change in IDUA as the pathogenic mutation in this individual (both parents were identified as carriers of the mutation), with IDUA enzyme activity significantly decreased. We further established an MPS I-related zebrafish model using IDUA-specific morpholino (MO) to suppress gene expression, and found that IDUA-MO zebrafish exhibited characteristic disease phenotypes with deficiency of IDUA. Transcriptome profiling of zebrafish larvae revealed 487 genes that were significantly altered when IDUA was depleted. TP53 signaling and LC3/GABARAP family protein-mediated autophagy were significantly upregulated in IDUA-MO zebrafish larvae. Moreover, leukotriene A4 hydrolase-mediated arachidonic acid metabolism was also upregulated. Introduction of wild-type human IDUA mRNA rescued developmental defects and aberrant signaling in IDUA-MO zebrafish larvae. In conclusion, our study provides potential therapeutic targets for the treatment of MPS I.


Subject(s)
Mucopolysaccharidosis I , Animals , Humans , Mucopolysaccharidosis I/genetics , Mucopolysaccharidosis I/pathology , Iduronidase/genetics , Iduronidase/metabolism , Zebrafish/genetics , East Asian People , Mutation
9.
Int J Mol Sci ; 24(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36901952

ABSTRACT

Mucopolysaccharidosis I-Hurler (MPS I-H) is caused by the loss of α-L-iduronidase, a lysosomal enzyme that degrades glycosaminoglycans. Current therapies cannot treat many MPS I-H manifestations. In this study, triamterene, an FDA-approved, antihypertensive diuretic, was found to suppress translation termination at a nonsense mutation associated with MPS I-H. Triamterene rescued enough α-L-iduronidase function to normalize glycosaminoglycan storage in cell and animal models. This new function of triamterene operates through premature termination codon (PTC) dependent mechanisms that are unaffected by epithelial sodium channel activity, the target of triamterene's diuretic function. Triamterene represents a potential non-invasive treatment for MPS I-H patients carrying a PTC.


Subject(s)
Mucopolysaccharidosis I , Animals , Mucopolysaccharidosis I/genetics , Iduronidase , Triamterene , Codon, Nonsense , Diuretics , Glycosaminoglycans/metabolism
10.
Am J Med Genet A ; 191(2): 564-569, 2023 02.
Article in English | MEDLINE | ID: mdl-36333985

ABSTRACT

Mucopolysaccharidosis type I (MPS I) is an autosomal recessive disorder caused by the deficiency of α-L-iduronidase and characterized by a progressive course with multisystem involvement. Clinically, MPS I is divided into two forms: (1) severe (Hurler syndrome), which presents in infancy and is characterized by rapid progressive neurological involvement; (2) attenuated (Hurler/Scheie and Scheie syndromes), which displays a slower progression and absent to mild nervous system involvement. The specific treatment for attenuated MPS I consists of enzyme-replacement therapy with laronidase (human recombinant α-L-iduronidase, Aldurazyme). We present updated data after 18 years of laronidase treatment in two siblings affected by the attenuated form of MPS I who started therapy at 5 months and 5 years of age, respectively. Clinical and laboratory data of the siblings show that long-term enzyme replacement therapy may improve/stabilize many symptoms already present at the time of the diagnosis and reduce the disease progression. This study confirms that early diagnosis and early initiation of enzyme-replacement therapy are essential to modify positively the natural history of the attenuated form of MPS I.


Subject(s)
Enzyme Replacement Therapy , Mucopolysaccharidosis I , Humans , Follow-Up Studies , Iduronidase/genetics , Iduronidase/therapeutic use , Mucopolysaccharidosis I/diagnosis , Mucopolysaccharidosis I/drug therapy , Mucopolysaccharidosis I/genetics , Recombinant Proteins/therapeutic use , Siblings , Infant , Child, Preschool
11.
Chembiochem ; 24(4): e202200619, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36453606

ABSTRACT

1-Azasugar analogues of l-iduronic acid (l-IdoA) and d-glucuronic acid (d-GlcA) and their corresponding enantiomers have been synthesized as potential pharmacological chaperones for mucopolysaccharidosis I (MPS I), a lysosomal storage disease caused by mutations in the gene encoding α-iduronidase (IDUA). The compounds were efficiently synthesized in nine or ten steps from d- or l-arabinose, and the structures were confirmed by X-ray crystallographic analysis of key intermediates. All compounds were inactive against IDUA, although l-IdoA-configured 8 moderately inhibited ß-glucuronidase (ß-GLU). The d-GlcA-configured 9 was a potent inhibitor of ß-GLU and a moderate inhibitor of the endo-ß-glucuronidase heparanase. Co-crystallization of 9 with heparanase revealed that the endocyclic nitrogen of 9 forms close interactions with both the catalytic acid and catalytic nucleophile.


Subject(s)
Iduronidase , Mucopolysaccharidosis I , Humans , Iduronidase/chemistry , Iduronidase/genetics , Uronic Acids , Glucuronidase/chemistry , Mucopolysaccharidosis I/genetics
12.
Hum Gene Ther ; 34(1-2): 8-18, 2023 01.
Article in English | MEDLINE | ID: mdl-36541357

ABSTRACT

The mucopolysaccharidoses (MPS) are a group of recessively inherited conditions caused by deficiency of lysosomal enzymes essential to the catabolism of glycosaminoglycans (GAG). MPS I is caused by deficiency of the lysosomal enzyme alpha-L-iduronidase (IDUA), while MPS II is caused by a lack of iduronate-2-sulfatase (IDS). Lack of these enzymes leads to early mortality and morbidity, often including neurological deficits. Enzyme replacement therapy has markedly improved the quality of life for MPS I and MPS II affected individuals but is not effective in addressing neurologic manifestations. For MPS I, hematopoietic stem cell transplant has shown effectiveness in mitigating the progression of neurologic disease when carried out in early in life, but neurologic function is not restored in patients transplanted later in life. For both MPS I and II, gene therapy has been shown to prevent neurologic deficits in affected mice when administered early, but the effectiveness of treatment after the onset of neurologic disease manifestations has not been characterized. To test if neurocognitive function can be recovered in older animals, human IDUA or IDS-encoding AAV9 vector was administered by intracerebroventricular injection into MPS I and MPS II mice, respectively, after the development of neurologic deficit. Vector sequences were distributed throughout the brains of treated animals, associated with high levels of enzyme activity and normalized GAG storage. Two months after vector infusion, treated mice exhibited spatial navigation and learning skills that were normalized, that is, indistinguishable from those of normal unaffected mice, and significantly improved compared to untreated, affected animals. We conclude that cognitive function was restored by AAV9-mediated, central nervous system (CNS)-directed gene transfer in the murine models of MPS I and MPS II, suggesting that gene transfer may result in neurodevelopment improvements in severe MPS I and MPS II when carried out after the onset of cognitive decline.


Subject(s)
Cognitive Dysfunction , Iduronate Sulfatase , Mucopolysaccharidosis II , Mucopolysaccharidosis I , Nervous System Diseases , Humans , Animals , Mice , Aged , Quality of Life , Mucopolysaccharidosis II/genetics , Mucopolysaccharidosis II/therapy , Mucopolysaccharidosis I/genetics , Mucopolysaccharidosis I/therapy , Central Nervous System/metabolism , Iduronidase/genetics , Iduronidase/metabolism , Iduronate Sulfatase/genetics , Cognitive Dysfunction/metabolism , Glycosaminoglycans/metabolism , Disease Models, Animal
13.
Biochem Biophys Res Commun ; 636(Pt 1): 147-154, 2022 12 25.
Article in English | MEDLINE | ID: mdl-36332477

ABSTRACT

Mucopolysaccharidosis type I Hurler syndrome (MPS IH) is a severe lysosomal storage disorder caused by alpha-l-iduronidase (IDUA) deficiency. Premature truncation mutations (PTC) are the most common (50%-70%) type of IDUA mutations and correlate with MPS IH. Nonsense suppression therapy is a therapeutic approach that aims to induce stop codon readthrough. The different ability of gentamicin to bind mutant mRNA in readthrough is determined by nucleotide sequence (PTC context: UGA > UAG > UAA) and inserted amino acid including the nucleotide position +4 of the PTC, as well as the mRNA secondary structure. We used COS-7 cells to investigate the functional characteristics of p.Q500X and p.R619X, IDUA variants and the effects of gentamicin in inducing stop codon readthrough of seven IDUA variants including p.Q500X, p.R619X, p.Q70X, p.E299X, p.W312X, p.Q380X, and p.W402X. Moreover, we performed prediction of RNA secondary structure using the online tool RNAfold. We found that cells treated with gentamicin showed significantly enhanced full-length IDUA expression and restored IDUA activity, in a dose-dependent manner, only in cells expressing cDNA with W312X, Q380X, W402X, and R619X. Among the readthrough-responsive variants, we observed UGA PTC in W312X, W402X and R619X; and UAG PTC with C at nucleotide +4 in Q380X. Changes of RNA secondary structure were noted only in mutants with readthrough-responsive variants including W312X, Q380X, W402X, and R619X. Additional preclinical studies of selected PTCs with potential readthrough, using drugs with less oto-nephrotoxicity, in patient's skin fibroblasts and animal model are necessary for the premise of personalized medicine.


Subject(s)
Iduronidase , Mucopolysaccharidosis I , Chlorocebus aethiops , Animals , Iduronidase/genetics , Codon, Nonsense/genetics , Gentamicins/pharmacology , Codon, Terminator/genetics , COS Cells , Mucopolysaccharidosis I/drug therapy , Mucopolysaccharidosis I/genetics , Mucopolysaccharidosis I/metabolism , Mutation , RNA, Messenger/metabolism , Nucleotides/therapeutic use
14.
Int J Mol Sci ; 23(19)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36232472

ABSTRACT

Mucopolysaccharidosis type I (MPSI) (OMIM #252800) is an autosomal recessive disorder caused by pathogenic variants in the IDUA gene encoding for the lysosomal alpha-L-iduronidase enzyme. The deficiency of this enzyme causes systemic accumulation of glycosaminoglycans (GAGs). Although disease manifestations are typically not apparent at birth, they can present early in life, are progressive, and include a wide spectrum of phenotypic findings. Among these, the storage of GAGs within the lysosomes disrupts cell function and metabolism in the cartilage, thus impairing normal bone development and ossification. Skeletal manifestations of MPSI are often refractory to treatment and severely affect patients' quality of life. This review discusses the pathological and molecular processes leading to impaired endochondral ossification in MPSI patients and the limitations of current therapeutic approaches. Understanding the underlying mechanisms responsible for the skeletal phenotype in MPSI patients is crucial, as it could lead to the development of new therapeutic strategies targeting the skeletal abnormalities of MPSI in the early stages of the disease.


Subject(s)
Iduronidase , Mucopolysaccharidosis I , Glycosaminoglycans/metabolism , Humans , Iduronidase/genetics , Mucopolysaccharidosis I/genetics , Phenotype , Quality of Life
15.
Genes (Basel) ; 13(8)2022 07 22.
Article in English | MEDLINE | ID: mdl-35893030

ABSTRACT

Mucopolysaccharidosis type I (MPS I) is a rare inherited lysosomal disorder caused by deficiency of the α-L-iduronidase enzyme, resulting in the progressive accumulation of glycosaminoglycans (GAGs), which interfere with the normal function of multiple tissues and organs. The clinical phenotype includes characteristic facial features, hepatosplenomegaly, dysostosis multiplex, umbilical and inguinal hernias, progressive cognitive deficits with corresponding hydrocephalus, and neuropathology. Untreated children do not survive into the second decade. The common cardiac phenotype seen in MPS I and other MPS types includes valve thickening and dysfunction, conduction abnormalities, coronary artery disease, and cardiomyopathy-usually seen later in the disease course. A 15-month-old ex-35-weeker who presented with cardiomyopathy and left ventricular failure at the age of three weeks is presented here. Early evaluation and diagnosis with the help of newborn screening (NBS), followed by treatment with enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT), resulted in improvement of his cardiopulmonary status. In MPS I, an early cardiac phenotype is uncommon. Based on the evidence from the literature review for early neonatal cardiac phenotype, we propose that all infants with abnormal newborn screening for MPS I should receive cardiac screening with echocardiogram and NT-proB-type natriuretic peptide (BNP) during the initial evaluation.


Subject(s)
Cardiomyopathies , Hematopoietic Stem Cell Transplantation , Mucopolysaccharidosis I , Enzyme Replacement Therapy/methods , Hematopoietic Stem Cell Transplantation/methods , Humans , Mucopolysaccharidosis I/diagnosis , Mucopolysaccharidosis I/genetics , Mucopolysaccharidosis I/therapy , Phenotype , Rare Diseases/drug therapy
16.
J Mol Med (Berl) ; 100(8): 1223-1235, 2022 08.
Article in English | MEDLINE | ID: mdl-35857082

ABSTRACT

ABSTARCT: Suppressing translation termination at premature termination codons (PTCs), termed readthrough, is a potential therapy for genetic diseases caused by nonsense mutations. Ataluren is a compound that has shown promise for clinical use as a readthrough agent. However, some reports suggest that ataluren is ineffective at suppressing PTCs. To further evaluate the effectiveness of ataluren as a readthrough agent, we examined its ability to suppress PTCs in a variety of previously untested models. Using NanoLuc readthrough reporters expressed in two different cell types, we found that ataluren stimulated a significant level of readthrough. We also explored the ability of ataluren to suppress a nonsense mutation associated with Mucopolysaccharidosis I-Hurler (MPS I-H), a genetic disease that is caused by a deficiency of α-L-iduronidase that leads to lysosomal accumulation of glycosaminoglycans (GAGs). Using mouse embryonic fibroblasts (MEFs) derived from Idua-W402X mice, we found that ataluren partially rescued α-L-iduronidase function and significantly reduced GAG accumulation relative to controls. Two-week oral administration of ataluren to Idua-W402X mice led to significant GAG reductions in most tissues compared to controls. Together, these data reveal important details concerning the efficiency of ataluren as a readthrough agent and the mechanisms that govern its ability to suppress PTCs. KEY MESSAGES: Ataluren promotes readthrough of PTCs in a wide variety of contexts. Ataluren reduces glycosaminoglyan storage in MPS I-H cell and mouse models. Ataluren has a bell-shaped dose-response curve and a narrow effective range.


Subject(s)
Iduronidase , Mucopolysaccharidosis I , Animals , Codon, Nonsense/metabolism , Fibroblasts/metabolism , Iduronidase/genetics , Iduronidase/metabolism , Iduronidase/therapeutic use , Luciferases , Mice , Mucopolysaccharidosis I/drug therapy , Mucopolysaccharidosis I/genetics , Mucopolysaccharidosis I/metabolism , Oxadiazoles
17.
Am J Med Genet A ; 188(10): 2941-2951, 2022 10.
Article in English | MEDLINE | ID: mdl-35869927

ABSTRACT

Mucopolysaccharidosis Type I (MPS I) is caused by deficiency of α-L-iduronidase. Short stature and growth deceleration are common in individuals with the attenuated MPS I phenotype. Study objectives were to assess growth in individuals with attenuated MPS I enrolled in The MPS I Registry while untreated and after initiation of enzyme replacement therapy (ERT) with laronidase (recombinant human iduronidase). Individuals in the MPS I Registry with at least one observation for height and assigned attenuated MPS I phenotype as of September 2020 were included. The cohort included 142 males and 153 females 2-18 years of age. Age and sex adjusted standardized height-for-age z-scores during the natural history and ERT-treatment periods were assessed using linear mixed model repeated measures analyses. Growth curves were estimated during both periods and compared to standard growth charts from the Center for Disease Control (CDC). There was a significantly slower decline in height z-scores with age during the ERT-treated period compared to the natural history period. Estimated average height z-scores in the ERT-treatment versus the natural history period at age 10 were -2.4 versus -3.3 in females and -1.4 versus -2.9 in males (females first treated 3 year; males <4.1 year). While median height remained below CDC standards during both the natural history and ERT-treated periods for individuals with attenuated MPS I, laronidase ERT was associated with slower declines in height z-scores.


Subject(s)
Mucopolysaccharidosis I , Body Height , Child , Cognition , Enzyme Replacement Therapy , Female , Humans , Iduronidase/therapeutic use , Male , Mucopolysaccharidosis I/drug therapy , Mucopolysaccharidosis I/genetics , Recombinant Proteins , Registries
18.
Int J Mol Sci ; 23(9)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35563175

ABSTRACT

Mucopolysaccharidosis type I (MPS I) is a rare monogenic disease in which glycosaminoglycans' abnormal metabolism leads to the storage of heparan sulfate and dermatan sulfate in various tissues. It causes its damage and impairment. Patients with the severe form of MPS I usually do not live up to the age of ten. Currently, the therapy is based on multidisciplinary care and enzyme replacement therapy or hematopoietic stem cell transplantation. Applying gene therapy might benefit the MPS I patients because it overcomes the typical limitations of standard treatments. Nanoparticles, including nanoemulsions, are used more and more in medicine to deliver a particular drug to the target cells. It allows for creating a specific, efficient therapy method in MPS I and other lysosomal storage disorders. This article briefly presents the basics of nanoemulsions and discusses the current state of knowledge about their usage in mucopolysaccharidosis type I.


Subject(s)
Mucopolysaccharidosis II , Mucopolysaccharidosis I , Enzyme Replacement Therapy , Genetic Therapy , Glycosaminoglycans/metabolism , Heparitin Sulfate/metabolism , Humans , Mucopolysaccharidosis I/genetics , Mucopolysaccharidosis I/therapy , Mucopolysaccharidosis II/genetics
19.
Eur J Cell Biol ; 101(3): 151232, 2022.
Article in English | MEDLINE | ID: mdl-35537249

ABSTRACT

Mucopolysaccharidoses (MPS) are inherited metabolic diseases caused by storage of glycosaminoglycans (GAGs), however, various modulations of the course of these diseases were identified recently due to impairment of different cellular processes. Here, using transcriptomic analyses in cells derived from patients suffering from eleven types of MPS, we demonstrated that expression of dozens to hundreds of genes coding for proteins involved in signal transduction processes is significantly changed in MPS cell relative to controls. When studying membrane estrogen receptor 1 (GPER1) and oxytocin receptor (OXTR) in more detail, we unexpectedly found formation of aggregates of GPER1 in MPS I, and those of OXTR in both MPS I and MPS II cells. The presence of these aggregates did not correlate with levels of expression of GPER1 and OXTR genes and levels of corresponding gene products. On the other hand, the aggregates disappeared in cells treated with enzymes which are otherwise deficient in MPS I and MPS II, causing efficient degradation of GAGs. We demonstrated that GPER1 and OXTR aggregates might be formed due to interactions with GAGs rather than arising from changes of levels of these proteins in cells.


Subject(s)
Mucopolysaccharidosis II , Mucopolysaccharidosis I , Receptors, Estrogen , Receptors, G-Protein-Coupled , Receptors, Oxytocin , Glycosaminoglycans/metabolism , Humans , Mucopolysaccharidosis I/genetics , Mucopolysaccharidosis I/metabolism , Mucopolysaccharidosis II/genetics , Mucopolysaccharidosis II/metabolism , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Oxytocin/genetics , Receptors, Oxytocin/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...